US 20240069872A1

a2y Patent Application Publication o) Pub. No.: US 2024/0069872 A1l

a9y United States

ASSENOV 43) Pub. Date: Feb. 29, 2024
(54) NO-CODE SOFTWARE DEVELOPMENT (52) US.CL
PLATFORM CPC oot GOG6F 8/34 (2013.01)
(71) Applicant: IVAN ASSENOV, WYOMING, MI (57) ABSTRACT

Us)

(72) Inventor: IVAN ASSENOV, WYOMING, MI
Us)

(21) Appl. No.: 17/960,197
(22) Filed: Oct. 5, 2022

Related U.S. Application Data

(60) Provisional application No. 63/252,976, filed on Oct.

6, 2021.

Publication Classification

(51) Int. CL

GO6F 8/34 (2006.01)

Disclosed is a no-code software development platform hav-
ing at least one user-facing administrative interface for
application development and at least one data-facing client
interface, the at least one administrative interface adapted
for assembling at least one interconnecting functional unit
substantially pre-coded to perform selected tasks, the tasks
at least one or more of instructed by the user and instructed
by data received through the at least one data facing client
interface. The at least one interconnecting functional unit
has at least one or more of at least one pre-coded form
application and at least one pre-coded card application
designed to perform interconnected workflow functions and
to provide the capability to form software applications. At
least one plugin interface operationally couples with at least
one client data source via the at least one data facing client
interface. A declarative language software program operably
couples the at least one interconnecting functional unit.

/ 1700

computer processor.

Operate through a user interface the no-code software
development platform stored within at least one
memary storage medium disposed on at least one

/ 1705

Access through at least one interconnecting functional
unit at least one or more of at least one pre-coded form
application and at least one pre-coded card application.

/, 1710

Perform independent, conditions-based functions on the
at least one pre-coded form application.

/’ 1715

form application.

Perform interconnected workflow functions by way of
the at least one pre-coded card application, the at least
one pre-coded card application further providing the
capability to integrate with the at least one pre-coded

Patent Application Publication Feb. 29,2024 Sheet 1 of 20 US 2024/0069872 A1

FIG. 1

10
147
& 130 150
135 DB »l ACENji |« Client Plug-in
" ;
147 \ ““““““““““““““““““ 142
,/ i , 140 ”*-—I— - —/-J— 1
146 i _ P Forms J
ACENi —~__ g M‘iﬁ"e I I
146 E « Cards !
i | 1
i Web P Forms :
Mobile i Ul I I
Ul ' Iy Cards
WEB . | | |
dmi Builder ! I
Admin i ¥ Forms "
-— -é gl willenll } API | "
: Cards Forms |l < :; Cards I
- |

120

I
—
N

144 142 144 140

Patent Application Publication Feb. 29,2024 Sheet 2 of 20 US 2024/0069872 A1

FIG. 2

100

\

Computer System

110
Y

113 — Main Memory

cry | (

- 114

115 ;
\\ Mznr:;ry < nput Unit
" Qutput
Control X Unit
4~ Unit
o
116 —— Y
h 4
Arithmetic &

|41 Logic Unit

User Interface ——____ 118

Feb. 29, 2024 Sheet 3 of 20

Patent Application Publication

10

\

FIG. 3

146
147 /

ACEN;i

ACEN;ji contain
description via ? Latitude
approach of user
interface slements such
as
-iD
-typo
~text
-styles
-conditions
-functions
-events

Ul instructions

US 2024/0069872 Al

User/System

CLIENT UI
Mobile Ul mobile device
converts data into Ul
Mobile device using apps
convert two typesof apps
Cards canexecute
workflows with many
different and connected
parts. Forms perform
assessments built around
queries. Cards may link

«

Enters Data

multiple applications
together

Patent Application Publication

FIG. 4

Admin Part
Web Hosted

Feb. 29, 2024 Sheet 4 of 20 US 2024/0069872 Al

App Store

Web Site

API

Blockchain

Smart TV

16T devices

SDK

embedded

Patent Application Publication Feb. 29,2024 Sheet 5 of 20 US 2024/0069872 A1

FIG. 5

143

142

Patent Application Publication Feb. 29,2024 Sheet 6 of 20 US 2024/0069872 A1

FIG. 6

30

Conditions Styles

@ info

I Textinput

& Bution

Ao Srackinig GRS

« Sirgle Sefection Group

3) Cepdureimanels) of dedwerg or sheat videa
«+* Muitipde Selection Group

Captues
Defraey Sl Sgratune

FE T S R

w0 Numeris inpit

B YesfMoflinknown

] Sigratarg Box:
& Checkbox

% Phone Mumber Raciplent Phone Numbey
,, B GiR
% Pate fecpent Ggnatios
st S BARi 0 panirey Yy rah }
B Camers
@ GP3

20

Patent Application Publication Feb. 29,2024 Sheet 7 of 20 US 2024/0069872 A1

FIG. 7

144

Al Toneg

Lhicken

Patent Application Publication Feb. 29,2024 Sheet 8 of 20 US 2024/0069872 A1

FIG. 8

148
Plugins
Crypto.Pay Crypto.Pay
C1-891 C2-1001 B C1-981 €2-991 BC

B — just hash stored on blockchain
BC — Content stored on blockchain

US 2024/0069872 Al

Feb. 29, 2024 Sheet 9 of 20

Patent Application Publication

Qmmmm 90 | uoBugsen | M S0y | mﬁzm%@..u.mma D094

*sBUPAs PROUBARE MOUS apEsy $1 a)13 U1 ML 35113 [

6 "OId

Patent Application Publication Feb. 29,2024 Sheet 10 of 20 US 2024/0069872 A1

FIG. 10

62

Patent Application Publication Feb. 29,2024 Sheet 11 of 20 US 2024/0069872 A1

FIG. 11

Step Name Alias (Name)
Level 1 Organization [
Level 2 State 1
40\ Level 3 Country —
Level 4 Community [———]
Level 5 Campus ——1
Level 6 Building C——]
Level 7 Wing —
Level 8 Floor E
Level 9 Room C—
Level 10 individual C—

Patent Application Publication Feb. 29,2024 Sheet 12 of 20 US 2024/0069872 A1

FIG. 12

Staff Access

o4
e
R
Ps
8
B
=
£
[
T
3]
&

Priile

CAgdmis

g T daY P iaks SHOK 1t A pnoite § NS na.\w

US 2024/0069872 Al

Feb. 29, 2024 Sheet 13 of 20

Patent Application Publication

.

AL |

RS (T OGNS T S BEG) D1 FRIKSBEA NOR ek)

cel

US 2024/0069872 Al

Feb. 29, 2024 Sheet 14 of 20

Patent Application Publication

Pl "O0d

0@

87

ZIOMY 4 A
£ woat {]
Twool
RS R N
TBUIM &7 -~
Buippng & ~
SHOWen &4
HHZ G A~
PRGN~ PN
TAMNO] €4 A
AYO & -
ufiledum) 3E05. 63 A

51989

{aaa aeer

SpoAY

WS SARE-080 9
079 839

US 2024/0069872 Al

Feb. 29, 2024 Sheet 15 of 20

ST "OIA

Patent Application Publication

00Ty puRmIBYER Uonebiaeny

sojary wonefesy

26107) eanay wBor

dejoryaes) mEtoy

Mnpgawing i wEEoL

JCHETS 3

A7y OR g

4307 punsifodeg indty

BB BMEYY 4S5

IO GORBE LMEES

ajen sameg aneuiig

10D punaiBneg sy

SET IO

A Su0n)

10§y BBy

DY XOGRERY S

4007 AL

oy punigiiey

Patent Application Publication Feb. 29,2024 Sheet 16 of 20 US 2024/0069872 A1

FIG. 16

Element 2

Right Margin
Right Border
IRight Padding

149

Top Margin

Top Border

Top Padding

Element 1
Bottom Border
Bottom Padding

Bottom Margin

3uipped 191
JapJiog Yai
UIdieN Y97

Patent Application Publication Feb. 29,2024 Sheet 17 of 20 US 2024/0069872 A1

FIG. 17A

/ 1700

Operate through a user interface the no-code software
development platform stored within at least one
memory storage medium disposed on at least one
computer processor,

l | / 1705

Access through at least one interconnecting functional
unit at least one or more of at least one pre-coded form
application and at least one pre-coded card application.

/ 1710

Perform independent, conditions-based functions on the
at least one pre-coded form application,

/ 1715

Perform interconnected workflow functions by way of
the at least one pre-coded card application, the at least
one pre-coded card application further providing the
capability to integrate with the at least one pre-coded
form application.

Patent Application Publication Feb. 29,2024 Sheet 18 of 20 US 2024/0069872 A1

FIG. 17B

/ 1720

Operationally couple with at least one plugininterface at
least one client data source via the at least one data
facing client interface.

/ 1725

Operably couple with a declarative language software
program the at least one interconnecting functional unit,
the declarative language software program further
managing the combined function of the at least one
interconnecting functional unit.

/ 1730
At least one or more of use an existing template, create a
template, and forgo templates, wherein created
templates may further be made available to at least one
or more of individuals, groups, and members within an
authorization hierarchy, the groups further determined
by at least one or more of individual identity, group
identity, assignment identity, and geolocation features.

©

Patent Application Publication Feb. 29,2024 Sheet 19 of 20 US 2024/0069872 A1

FIG. 17C

©
/ 1735

Assemble with at least one administrative interface the
at least one interconnecting functional unit substantially
pre-coded to perform selected tasks, creating the tasks
at least one or more of being instructed by the user and
instructed by data received through the at least one data
facing client interface, the assembly using at least one or
more of at least one user-facing administrative interface
for software application development and the at least
one data-facing client interface,

/ 1740

Qperationally interface with at least one or more of a
customer resource management program and an
enterprise resource platform; the at least one or more
customer resource management programs and
enterprise resource platforms at least one or more of
delivering lead generation, lead tracking, calendar and
appointment scheduler, event organization, project
management, push notifications, geofencing
functionality, mapping route generation, and canvasing

map creations.
@

Patent Application Publication Feb. 29,2024 Sheet 20 of 20 US 2024/0069872 A1

FIG. 17D

@ / 1745

At least one or more of process data received through
the at least one client interface coupled to the at least
one plugin interface and receiving data processed by the
at least one data source, the data source operationally
coupled to the at least one plugin interface,

f 1750

Process at least partially by at least one machine learning
algorithm at least a portion of the data received through
the at least one client interface.

/ 1755

Read with the plugin interface at least one hashed plugin
artifact on a public blockchain and receive a security alert
sent if hash codes are not matched.

[1760

Read differentiated approvals for manual plugins and for
automatic semantic Web-type plugins, the reading
including one or more seals to indicate at last one or
more of coverage code; determining whether the
software application is semantic made, and determining
that the blockchain code hash matches artifact hash
code, and checking the blockchain code at least one or
more of once per day, once per hour, and as a read-only
process.

US 2024/0069872 Al

NO-CODE SOFTWARE DEVELOPMENT
PLATFORM

CLAIM OF PRIORITY

[0001] This application claims priority to and the benefit
of U.S. Provisional application patent application with Ser.
No. 63/252,976, filed on Oct. 6, 2021, with the same title,
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The inventive concept relates generally to a no-
code software development platform for building software
applications.

BACKGROUND

[0003] Businesses are often unable to commit resources to
maintain in-house application development. Nor may they
be able to afford or justify the time and effort required to
transfer domain knowledge to an outside developer. No-
code platforms provide drag-and-drop tools designed to
enable software application creation without code writing by
users.

[0004] No-code development platforms allow users to
create software applications typically through graphical user
interfaces and configurations instead of through traditional
computer programming. Traditional computer programming
typically involves tasks such as: analysis, generating algo-
rithms, profiling algorithm accuracy and resource consump-
tion, and implementing algorithms in a chosen programming
language, programming often referred to as coding. No-
coding platforms have coding, but that coding is already
built in to create functional units of software that can be
combined to create a software application.

[0005] No-code development platforms are closely related
to low-code development platforms wherein a low-code
development platform provides a development environment
used to create software applications typically through a
graphical user interface instead of through traditional com-
puter programming. A low-coded platform may produce
entirely operational applications or require additional coding
for specific situations such as to allow one functional unit of
code to interface with another.

[0006] No-code and low-code development platforms
reduce the amount of traditional computer programming
required to produce software applications, enabling accel-
erated delivery of software applications. A common benefit
of both is that a wider range of people can contribute to the
software application’s development, not only those with
coding skills.

[0007] Currently, however, no-code development plat-
forms and low-code development platforms have tradeoffs.
Even no-code development platforms may require coding to
develop software applications without compromising devel-
oping the software applications the way users want, the
compromises based on limitations inherent in the functional
units available and how those functional units may be
interconnected. Interfaces may lack universality, forcing
users to compromise functions that ease and attract end-
users in favor of form, function, and ease of building
software applications, a weakness that can force enterprises
to put the customer second instead of first. Developers
present the best-possible-fit to end-users limited by no-code
and low-code functional units instead of the best-fit solution

Feb. 29, 2024

for end-users as could be produced with bespoke coding.
Therefore, there is a need for an improved no-code devel-
opment platform for developers and for end-users who will
engage the resulting software applications.

SUMMARY OF THE INVENTION

[0008] Disclosed is a no-code software development plat-
form having at least one computer processor with a memory
storage medium on which operates the no-code software
development platform. The no-code software development
platform, in some embodiments, has an at least one user-
facing administrative interface for application development
and at least one data-facing client interface, the at least one
administrative interface designed for assembling at least one
interconnecting functional unit substantially pre-coded to
perform selected tasks, the tasks either or both instructed by
the user and instructed by data received through the at least
one data facing client interface. The at least one intercon-
necting functional unit has at least one or more of at least one
pre-coded form application and at least one pre-coded card
application. The at least one pre-coded form application is
designed to perform independent, conditions-based func-
tions. The at least one pre-coded card application is designed
to perform interconnected workflow functions and to pro-
vide the capability to integrate with the at least one pre-
coded form application. At least one plugin interface is
operationally coupled to at least one client data source via
the at least one data facing client interface. A declarative
language software program operably couples to the at least
one interconnecting functional unit, the declarative language
software program further managing the combined function
of the at least one interconnecting functional unit.

[0009] In one embodiment of the no-code software devel-
opment platform, the no-code software development plat-
form operationally interfaces with at least one or more of a
customer resource management program and an enterprise
resource platform.

[0010] In one embodiment of the no-code software devel-
opment platform, the software application developed by the
no-code software development platform at least one or more
of processes data received through the at least one client
interface and receives data processed by the at least one data
source operationally coupled to the at least one plugin
interface.

[0011] In one embodiment of the no-code software devel-
opment platform, at least a portion of the data received
through the at least one client interface is at least partially
processed by at least one machine learning algorithm.

[0012] In one embodiment of the no-code software devel-
opment platform, the declarative language is based on
JavaScript Object Notation (JSON) format.

[0013] The inventive concept now will be described more
fully hereinafter with reference to the accompanying draw-
ings, which are intended to be read in conjunction with both
this summary, the detailed description, and any preferred
and/or particular embodiments specifically discussed or oth-
erwise disclosed. This inventive concept may, however, be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein; rather,
these embodiments are provided by way of illustration only
and so that this disclosure will be thorough, complete, and
will fully convey the full scope of the inventive concept to
those skilled in the art.

US 2024/0069872 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a representative no-code software
development platform schematic;

[0015] FIG. 2 illustrates a computer processor operable
with a memory storage medium;

[0016] FIG. 3 illustrates an ACENji declarative language
interface with a representative client interface;

[0017] FIG. 4 illustrates a Web interface to Web elements;
[0018] FIG. 5 illustrates a representative pre-coded form
application;

[0019] FIG. 6 illustrates representative pre-coded form

applications disposed on a representative smartphone;

[0020] FIG. 7 illustrates a representative pre-coded card
application;

[0021] FIG. 8 illustrates representative blockchain
plugins;

[0022] FIG. 9 illustrates representative file headers;
[0023] FIG. 10 illustrates representative file headings;
[0024] FIG. 11 illustrates representative administrative
levels;

[0025] FIG. 12 illustrates a representative administrative

permissions page;

[0026] FIG. 13 illustrates a representative administrative
levels page;
[0027] FIG. 14 illustrates a representative conditions-

based administrative page;

[0028] FIG. 15 illustrates a representative themes admin-
istrative page;
[0029] FIG. 16 illustrates a representative canvas drawing

designed to create forms;
[0030] FIGS. 17A-17D illustrate a representative no-code
software development platform method.

DETAILED DESCRIPTION OF THE
INVENTION

[0031] Following are more detailed descriptions of vari-
ous related concepts related to, and embodiments of, meth-
ods and apparatus according to the present disclosure. It
should be appreciated that various aspects of the subject
matter introduced above and discussed in greater detail
below may be implemented in any of numerous ways, as the
subject matter is not limited to any particular manner of
implementation. Examples of specific implementations and
applications are provided primarily for illustrative purposes.
[0032] FIGS. 1-2 illustrate a representative no-code soft-
ware development platform 10 having at least one computer
processor 100 operable with a memory storage medium 115
on which operates the no-code software development plat-
form 10. The no-code software development platform 10, in
this exemplary embodiment, has, as further illustrated in
FIG. 4, an at least one user-facing administrative interface
120 for application development and at least one data-facing
client interface 130, the at least one administrative interface
120 designed for assembling at least one interconnecting
functional unit 140 substantially pre-coded to perform
selected tasks, the tasks either or both instructed by the user
and instructed by data received through the at least one data
facing client interface 130. In this exemplary embodiment,
the user interface 118 is a part of at least one or more mobile,
Web, embedded, desktop, and other devices driven by the
one or more computer processors 100. Other embodiments
may lack either or both the interfaces 120 and 130. The at
least one interconnecting functional unit 140 has at least one

Feb. 29, 2024

or more of at least one pre-coded form application 142 and,
as illustrated in FIG. 7, at least one pre-coded card appli-
cation 144. The no-code software development platform 10
includes at least one plugin interface 150. The at least one
pre-coded form application 142 is designed to perform
independent, conditions-based functions. The at least one
pre-coded card application 144 is designed to perform
interconnected workflow functions and to provide the capa-
bility to integrate with the at least one pre-coded form
application 142. The at least one plugin interface 150 is
designed to operationally couple with at least one client data
source 135 and, in some embodiments, may do so via the at
least one data facing client interface 130. A declarative
language software program 146 operably couples to the at
least one interconnecting functional unit 140, as further
illustrated by FIG. 3, the declarative language software
program 146 further managing the combined function of the
at least one interconnecting functional unit 140.

[0033] FIG. 2 illustrates an exemplary computer processor
central processing unit (CPU) 110, also called a central
processor or main processor, which is the electronic circuitry
within the representative at least one computer 100 that
executes instructions that make up a computer program. The
CPU 110 performs basic arithmetic, logic, controlling, and
input/output (I/O) operations specified by the instructions in
the program.

[0034] An arithmetic and logic unit (ALU) 117 is a
combination digital electronic circuit that performs arithme-
tic and bitwise operations in integer binary numbers. Tra-
ditionally, the term CPU 110 refers to a processor, more
specifically to its processing unit and control unit (CU) 116,
distinguishing these core elements of a computer from
external components such as main memory 113 and input
output (I/O) circuitry 114. The CPU 110 may also contain
memory 115. Memory 115 refers to a component that is used
to store data for immediate use in the computer 100. A user
interface 118 is illustrated on this representative embodi-
ment operationally coupled to the at least one central pro-
cessing unit (CPU) 110 having the at least one memory unit
115.

[0035] The representative embodiment is an exemplary
no-code software development platform 10 through which
software programs having different and connected parts
operably coupled to each other may be created, distributed,
and maintained by users, to include users lacking the pro-
gramming skills of software developers of ordinary skill in
the art with such users, hereafter, referred to as unskilled.
Users of the no-code software development platform 10 can
also be skilled.

[0036] The no-code software development platform 10
allows unskilled users the power and control to create and
share software products, to include levels of performance
considered suitable for commercial distribution, without
needing skills in any developmental software language,
wherein unskilled users may focus their creativity on their
own domain knowledge as it applies to using the disclosed
no-code software development platform 10. The no-code
software development platform 10 further reduces the
requirement to communicate software program ideas to
software developers wherein miscommunication is a risk.
[0037] The risks addressed by the no-code software devel-
opment platform 10 include the possibility that software
developers will forgo developing the software programs
unskilled users want in favor of what the software develop-

US 2024/0069872 Al

ers believe the unskilled users need. The risks further
include software developers developing software programs
without industrial domain knowledge, meaning the software
developers may lack an intuitive feel for how to minimize
obstacles for software program adoption from those people
associated with the unskilled users. Such risks can be
summarized in terms of 1) how proficiently a challenge
addressable by a software program may be assessed, 2) how
a solution may be decided upon, and 3) how a solution may
be created and implemented, where it would otherwise fall
upon the unskilled user to communicate the best orientation
for success to a software developer from the framework of
industry domain knowledge in order to obtain the practical
and psychologically best-fit software program required for
given tasks.

[0038] One embodiment of the disclose no-code software
development platform 10 is designed to extend at least one
or more of existing customer resource management pro-
grams (CRM) and enterprise resource platform (ERP) sys-
tems on, as illustrated in FIG. 6, a selected computerized
device 20 at a selected location and time and with consid-
eration for required security. One embodiment of the dis-
closed no-code software development platform 10 is
designed to create stand-alone products on the selected
computerized device 20 at a selected location and time and
at the required level of security. The no-code software
development platform 10 is designed to work substantially
entirely as a no-code software development platform 10,
meaning no coding is required to build the complete inter-
faced software application.

[0039] The disclosed no-code software development plat-
form 10 is designed for creating mobile apps, Web sites, and
APT’s, in a variety of hardware environments running a
variety of commercial operating systems, interfacing with
common hardware and software environments often used by
enterprises, the no-code software development platform 10
operable in some embodiments having the representative
user interface display 118. The no-code software develop-
ment platform 10 includes the declarative language 146
(ACENji) 147 designed to provide users in current and
future technologies a substantially entirely no-code solution.
ACEN;i 147 is focused on bridging the gap between indus-
try domain knowledge and the final software product.
[0040] Declarative languages 146, also called nonproc-
edural or very high level, are programming languages in
which a program substantially specifies what is to be done
rather than how to do it. Pre-coded features and options for
creating software applications are hidden from users, allow-
ing users to focus more on what their application does—
product features and flow of their process workflow—than
on how their application does it.

[0041] The no-code software development platform 10
allows users—skilled and unskilled—with an algorithm in
mind for their desired custom solution to, as illustrated by
FIG. 6, simply drag and drop (or use voice navigation) tiles
30 representing pre-written packages of code that will
assemble as interconnecting functional units 140 necessary
behind the interface to result in a completed software
application, software applications that can then be hosted on
selected computerized devices 20 such as mobile devices,
cell phones and tablets, servers, Web-based computers, and
personal computers. Exemplary devices include, but are not
limited to, mobile marketplaces such as Apple Store and
Google Play using types of mobile devices such as: cell-

Feb. 29, 2024

phones, tablets, watches, smart TVs, smart walls, and
embedded IoT hardware. Capabilities may include, but are
not limited to:

[0042] Custom hierarchy-based access authorization
granted by specified locations and roles in web and
mobile systems 40, as illustrated by FIG. 11.

[0043] Graphic representation of mobile hierarchy in
super administrator interfaces 41, as illustrated by
FIGS. 12 and 13.

[0044] Mobile access authorization by super adminis-
trator interfaces 41 to simulate mobile user activity
without using passwords.

[0045] Custom software development language
(ACEN;ji) 147 which enables no-code rapid software
application development of application assignments,
conditions, and graphical layouts.

[0046] An ability to create no-code mobile software
applications that include a multi-layered, drill-down
hierarchy of inventory with rich user interfaces (includ-
ing, but not limited to, PDF’s, videos, text, pictures,
checks, etc. on the cards).

[0047] An ability in the mobile user application to select
from defined inventory (PDF link files) and send them
as PDF attachments via email instantly from the mobile
software application (pre-defined or dynamically added
email recipients).

[0048] An ability regarding the at least one pre-coded
form application 142 to dynamically link and share data
between multiple mobile software applications, the
data flow enabled as “bottom-up” and “top-down.”

[0049] An ability regarding the at least one pre-coded
form application 142 to combine use of multiple mobile
software applications into use seamlessly as one within
user experiences.

[0050] One embodiment of the disclosed no-code software
development platform 10 allows multiple applications to
operate inside the same environment without requiring sepa-
rate applications. In one embodiment of the no-code soft-
ware development platform 10, the software application
entity resides within an administrative system 122 and is
pushed out to distribution. In one embodiment of the no-
code software development platform 10, users can make the
software application available in application stores and
allow the software application to be pulled on demand.
[0051] Embodiments of the no-code software develop-
ment platform 10 are designed to be Health Insurance
Portability and Accountability Act (HIPAA) compliant.
Passwords are unshared, and technical support users can
verify each individual account user for either administration
or for each subordinate user using predefined features to
simulate user activities. Multiple tiers of users may exist to
include super administrator users coordinating with other
users.

[0052] One embodiment of the no-code software devel-
opment platform 10 focuses on three primary and unique
valued functionalities that include at least one or more of at
least one pre-coded form software application 142, at least
one pre-coded card software application 144, as illustrated
by FIG. 7, and at least one plugin interface 150. The at least
one pre-coded form software application 142 is designed to
perform independent, conditions-based functions, and in
some embodiments is designed to operably couple with at
least one or more CRM and ERP platforms.

US 2024/0069872 Al

[0053] Pre-coded form applications 142 stand alone as
software applications and are not combined or cross-com-
municated with other form applications 142 or card appli-
cations 144 to create more complex logic solutions. How-
ever, internal to each pre-coded form application 142 is
several layers, or pages and multiple element choices that
can all be integrated into logic algorithms using conditional
logic functions. Conditional functions allow for classical if
X, then y, else z, and do-while operational elements found at
the foundation of computer coding. Further, these functions
are available to the user without the need to understand
computer code languages. Pre-coded form applications 142
are used to bring multiple featured elements into an emu-
lated device space within an administrative editor environ-
ment 124 of the at least one administrative interface 120 and
allow for users to design and create custom software appli-
cations. The no-code software development platform 10 also
allows new elements to be created within third-party CRM/
ERM platform applications as plugin interfaces 150.
[0054] Several pre-constructed templates are available to
users as a starting point from which to clone and edit
bespoke software applications. Users may also start without
templates, create new templates, and reuse templates. Fur-
ther, software applications they create can be made available
for group or specific individual authorizations using a hier-
archy authorization function within the administrative editor
124 and a role and geolocation feature useful for determin-
ing assignments and where a given user operates.

[0055] Illustrated in FIG. 5 is representative scenario for
creating the at least one pre-coded form application 142 is
for the given administrative user to click a “create form”
button in an administrative editor 124 of the administrative
interface 120, then add a form “Title” and a short description
supporting the title to inform other users of what the given
pre-coded form application 142 function is intended to do.
The form creator (admin/user) may add an image. Adding an
image 143, as illustrated in FIG. 5, is optional but recom-
mended to aid users in future form menus to identify their
applications, enhancing the visual appearance of the distrib-
uted software application created via the no-code software
development platform 10 to remote users.

[0056] Without further logic (element) construction, on
the representative embodiment, the administrator/creator
must “save” the given pre-coded form application 142,
which will make the given pre-coded form application 142
available as a software application, yet at this point the
system creates an empty pre-coded form application 142 that
is ready for editing into a useful software application tool.
System configuration is triggered to manage the software
application, invisible to the administrative user via the
ACEN;ji development language 147, the ACEN;ji develop-
ment language 147 creating a completely automated and
seamless, graphic emulated drag and drop, fill in the blanks,
etc., game-like user interface experience as the skeleton of
the desired future pre-coded form application 142.

[0057] ACEN;ji 147 is, as noted, a declarative language
146 that manages such elements as:

[0058] Workflows

[0059] Functionality

[0060] Order of Operations

[0061] Conditional Logic

[0062] Elements Settings

[0063] Layout, Format, and Style

Feb. 29, 2024

[0064] Action Commands and “Required/Optional”
Conditions
[0065] Additional Choice Options and Required

Response Format and Behavior

[0066] Overall Interface Format, Image, and Color
Options
[0067] Turnkey Mobile application Deployment via

Common iStores (Google, Apple, etc.)
[0068] ACEN;ji’s 147 declarative language 146 allows
scaling and creating workflows consisting of many different
and connected parts. Pre-coded form application creation
allows multiple pages to be driven by desired conditional
logic, which drives the pre-coded form application user
workflow to move from page to page, requiring only the path
selected by the administrative user who may be an unskilled
user. This approach ensures software application users can
access substantially all possibilities yet follow only the steps
of the process sequence needed to be performed to the
administrative user’s preferences.
[0069] In some embodiments, multiple users may be
involved in building an application software, therefore
requiring the at least one administrative interface 120. When
users use the no-code software development platform 10, an
audit trail may be triggered. User sessions may be captured
with the exact preferences of detailed information collected
and retrieved for subsequent use in the administrative inter-
face 120 (the administrator’s domain). Collected session
information may be compiled for an individual session or for
an interval of time, as desired by the administrator. These
collected data files are available to be at least one or more
of exported via flat file, pushed via API to third party
systems, and stored on public or, as illustrated in FIG. 8,
private blockchain 148. In addition, a simple hash may be
used to store on blockchain to validate the audit trail.
[0070] Pre-coded card applications 144 differ from pre-
coded form applications 142. Pre-coded card applications
144 use the ACEN;ji language 147 to facilitate creating
workflows, the workflows having dynamic screens. Users
can build individual dynamic card-built applications, then
combine unlimited numbers of card-built applications into a
seamless single application experience without disclosing to
the users of the created software application that these
pre-coded card applications 144 are segregated. A user may
create a virtual ecosystem through which to organize and
reuse the user’s no-code software development platform
creations. The user experience is seamlessly executed by
knitting together manageable smaller algorithms into a fab-
ric, which can have many different and connected parts yet
still be manageable in smaller pieces. To create a pre-coded
card application 144, the user opens the no-code software
development platform 10, navigates to the appropriate menu
and selects “Create Card,” as illustrated in FIG. 7.
[0071] As with pre-coded form applications 142, a pre-
coded card application 144 needs to be initially defined with
a name and brief description, then saved. Upon reopening
the administrative editor 124, the user will build desirable
functionality similar to the form builder. The pre-coded card
applications 144 include additional behaviors such as func-
tions and events. Functions then can be separated into
predefined actions in which special features may be defined
and applied. Pre-coded card applications 144 allow users to
tie together tasks and logical sequences in smaller pieces
that eventually can be built to define workflows consisting of
many different and connected parts. By parsing complexity

US 2024/0069872 Al

into smaller, pre-coded card applications 144 and knitting
them together into a fabric of software applications, screens,
events, and wired thought. Data and logic can flow in
multiple directions simultaneously.

[0072] The no-code software development platform 10
allows new elements to be created within most third-party
CRM and ERP platform applications as a plugin via the
plugin interface 150. CRM/ERP features of the no-code
software development platform 10 include at least one or
more of:

[0073] Lead Generation
[0074] Lead Tracking
[0075] Calendar, Appointment Scheduler
[0076] Event Organization
[0077] Project Management
[0078] Push Notifications
[0079] Geofencing Functionality
[0080] Mapping Route Generation
[0081] Canvasing Map Creations
[0082] In one embodiment, of the no-code software devel-

opment platform 10, Symantec environment facilitates
plugin capabilities to be created and shared. The plugin
interface 150 is designed to encourage third parties to use the
developed software applications and to recommend and
request new elements germane to needs. Testing methods
use at least one or more of C1 (statement coverage) and C2
(branch coverage) wherein C1 stands for statement coverage
and C2 for branch or condition coverage. When a given
plugin interface 150 is deployed for use, C1 and C2 displays
the percentage coverage. A plugin is designed for use only
at substantially greater than 90% coverage for manual
selections. The next level of testing is performed as an
automatically complete semantic Web-like system where the
system chooses which plugin to employ in application
construction. In this case, both C1 and C2 achieve coverage
of substantially greater than 99% for acceptability. Each
plugin interface 150 may include a precondition. Executive
and post-condition are described by the ACENji 147.
[0083] To prevent fraudulent activity when a plugin
request is sent for an approval seal, a hash of the original
plugin artifacts may be hashed and stored on a public
blockchain ledger. An opt-in section of metadata may be
mandatory for the requestor in the “On” condition. If fraudu-
lent activity is sensed, the plugin interface 150 makes an
instant comparison of the hash to the original hash. If the
hash codes do not match, a security alert is sent. Approval
seals in some embodiments mark plugins ready for use in
manually and automatic settings. Differentiated approval
seals may be provided for manual plugins and for automatic
semantic Web-type plugins. Predefined software applica-
tions also may have two seals: one showing the coverage
code and another showing if the software application is
semantic made. A third type of approval is available to
employ, ensuring that the blockchain code hash matches
artifact hash code.

[0084] In some embodiments, the no-code software devel-
opment platform 10 includes predefined templates that
group categories by hierarchy. These will follow the cover-
age and approval seal “S” for the given blockchain 148.
Blockchain approval seals in some embodiments may be
checked at least one or more of once per day, once per hour,
and as a read-only process.

[0085] The disclosed no-code software development plat-
form 10 is designed to be agnostic about the origins of data

Feb. 29, 2024

and which format schema is employed while uploaded. The
incoming data source may be in a discrete file such as
filename.csv or Excel, Google Sheet, AirTable, and other
data spreadsheets. Alternatively, data may be imported from
a relational (NoSQL) database or other common types of
Application Program Interfaces (API). There are steps
within the representative process to identify the parametric
entities in play (of interest and digital value) from the entire
accessed set of data. Decisions regarding whether to set an
appropriate schema automatically or manually may use
artificial intelligence algorithms built-in as integral intellec-
tual properties of the no-code software development plat-
form 10.

[0086] The disclosed no-code software development plat-
form 10 may apply machine learning, combined with
manual parameter selection allows users to easily process
data files without burdensome constraints on file formatting
prior to uploading. Machine learning may include one or
more of decision trees, neural networks, Bayesian networks,
genetic programs, nearest neighbor, and other strategies as
may be devised.

[0087] As illustrated by FIG. 9, within the no-code soft-
ware development platform 10, users are allowed to enter
files that may or may not include header data tags 60. If
headers do not exist, the no-code software development
platform 10 may apply a machine-generated header data tag
60. Machine learning may aid in defining machine-gener-
ated headers. In one embodiment, as further illustrated in
FIG. 9, the user sees on the user interface 118 a small
triangle/arrowhead 61 facing down to indicate this action.
The user may click anywhere in the header to initiate proper
selection.

[0088] As illustrated by FIG. 10, in the representative
embodiment, when a given user clicks on a given header, a
drop-down menu opens with the no-code software develop-
ment platform 10 and offers predefined data parametric
header types 62. Users may then select the most appropriate
predefined data parametric header type 62 from the menu of
existing types. Guidance allows only one predefined data
parametric header type 62 per column. If the exact (user-
desired) predefined data parametric header type 62 is not
included in the menu, the user may select “text type” as a
default.

[0089] FIG. 10 further illustrates that when the user clicks
on a given predefined data parametric header 60, a drop-
down menu opens with the no-code software development
platform 10 common predefined data parametric header
types 62. Users may then select the most appropriate header
from the menu of existing header types 62. Guidance allows
only one header type 62 per column. If the exact (user-
desired) header type 62 is not included in the menu, the user
may select “text type” as the default. The example provided
is an exemplary illustration of how parametric header type
62 assignments work.

[0090] FIG. 11 illustrates representative administrative
levels 40. FIG. 12 illustrates a representative administrative
permissions page 41. FIG. 13 illustrates a representative
administrative levels page 133.

[0091] As illustrated in FIG. 15, the column header may
change color to indicate a selection has already been
assigned. Users may designate multiple columns having the
same header type 62. Users may combine multiple header
types 62 inside the same column, separated by a comma. The
order of such selections is based upon the order of the list.

US 2024/0069872 Al

Users may export the data source at any time in formats such
as csv, excel. The no-code software development platform
10 software application may supplement additional meta
data inside the header of the file for operational purposes.

[0092] Declarative language 146 ACEN;ji 147 is based on
JavaScript Object Notation (JSON) format and allows the
ability to scale to substantially unlimited numbers of differ-
ent and connected parts on the no-code development plat-
form 10. JSON is an open standard file format and data
interchange format that uses human-readable text to store
and transmit data objects consisting of attribute-value pairs
and arrays or other serializable values, the data format
having a diverse range of functionality in data interchange
including communication of Web applications with servers.

[0093] ACEN;ji 147 in one exemplary embodiment covers
the following: 1) elements, each element defined by attri-
butes such as but not limited to id, icon, label, optional,
question id, question text, date format, calendar, gps, and
more, ACENji 147 supporting elements of contemporary
HTML supports, combinations of some elements also
grouped as separate elements; 2) survey type questions and
answers, each question defined with its own attributes, for
example:

“questions™: [

“id”: “config-Info-07,

“icon”: “mdi mdi-information-outline”,

“label”: “Info”,

“optional”: true,

“questionld”: “Info-17,

“questionText”: “Welcome to Santa’s Christmas List
app. He’s updating his list !,

“questionType”: “Info”

3) assessment type questions—variety of answers, support-
ing the ability for a user to be flexible and group more than
one question under a single question, also giving the ability
to spread the answers across more than one answer; 4)
condition logic—supports, as illustrated by FIG. 14, offering
nested conditions of substantially unlimited different and
connected parts, ACENji 147 separating the conditions as
separate sections, conditions being declarative wherein one
side of the conditions are always true and the rest are false
by default, affording the ability to group and create hierarchy
and order conditions even outside normal conditional logic,
conditional logic being a set of either or both rules and
conditions that cause the disclosed process elements to
change based on if/then input, each element visually testable
in an associated simulator while building the conditions,
users always having the ability to disable the simulator if
desired, conditions allowed to be edited, deleted, cloned, or
disabled on the fly with associations with other conditions
effected immediately after the change; 5) actions supporting
add, remove, edit, delete, further supporting the ability to
create unlimited actions associated with at least one or more
of apps, screens, and single assessment entries by users
either or both online and offline, either or both done by them
and done by other individuals; 6) supports of modal win-
dows, offering the ability to create rich environments that are
like real interactive end user via opening other windows and
giving users good choices for action; 7) support pined
windows, allowing creators of software applications to

Feb. 29, 2024

anchor specific sections of the software applications using
pinned windows and create appealing user interfaces, for
example:

“id”: “config-PinnedPanel-1630584428627-Button-
1630584441598”,
“icon”: “mdi mdi-cursor-pointer”,
“type’”: “element”,
“group”: [
“form”,
“card”

I8

8) supports multiple screen pages to be defined as declara-
tive with or without conditions, for example:

“onDelete”: {
“action”: {
“label”: “Open Modal”,
“value”: “openModal”

“provider”: {
“label”: © config-ModalForm-
1630583710244”,

“value”: “config-ModalForm-
1630583710244~

}

9) support different providers, applications to connect to
each interconnecting functional unit 140 as one software
application; 10) supports for mapping to input schema such
as, but not limited to, csv, Excel, SQL table, Google Sheets,
JavaScript NoSQL databases, and more; and 11) support
custom styles, as illustrated by FIG. 15, each software
application supports theme with each element supported
with its own CSS style, including at least one or more of, but
no limited to: font size, text color, icon color, input back-
ground color, check box color, selection color, agreements
color, background color, navigation color, input border
color, signature color, toggle thumb color, toggle track color,
navigation background color, selection active color, signa-
ture border color, toggle track color active, and more.
[0094] As illustrated in FIGS. 15-16, declarative language
146 ACEN;ji 147 may include canvas drawing 149 designed
to create such documents as pdf forms and populate those
pdf forms with dynamically driven data, and may be further
designed for drawing, prepare, and rendering full HTML
Web sites.

[0095] Illustrated in FIGS. 17A-17D is a representative
method for using a no-code software development platform
10, the method including the step of 1700, operating through
a user interface 118 the no-code software development
platform 10 stored within at least one memory storage
medium 115 disposed on at least one computer processor
100. The method further includes the step of 1705, accessing
through at least one interconnecting functional unit 140 at
least one or more of at least one pre-coded form application
142 and at least one pre-coded card application 144. The
method further includes the step of 1710, performing inde-
pendent, conditions-based functions on the at least one
pre-coded form application 142. The method further
includes the step of 1715, performing interconnected work-
flow functions by way of the at least one pre-coded card

US 2024/0069872 Al

application 144, the at least one pre-coded card application
144 further providing the capability to integrate with the at
least one pre-coded form application 142. The method
further includes the step of 1720, operationally coupling
with at least one plugin interface 150 at least one client data
source 135 via the at least one data facing client interface
130. The method further includes the step of 1725, operably
coupling with a declarative language software program 146
the at least one interconnecting functional unit 140, the
declarative language software program 146 further manag-
ing the combined function of the at least one interconnecting
functional unit 140.

[0096] The method for using a no-code software develop-
ment platform 10 may further include the step of 1730, at
least one or more of using an existing template, creating a
template, and forgoing templates, wherein created templates
may further be made available to at least one or more of
individuals, groups, and members within an authorization
hierarchy, the groups further determined by at least one or
more of individual identity, group identity, assignment iden-
tity, and geolocation features.

[0097] The method for using a no-code software develop-
ment platform 10 may further include the step of 1735,
assembling with at least one administrative interface the at
least one interconnecting functional unit 140 substantially
pre-coded to perform selected tasks, creating the tasks at
least one or more of being instructed by the user and
instructed by data received through the at least one data
facing client interface 130, the assembly using at least one
or more of at least one user-facing administrative interface
120 for software application development and the at least
one data-facing client interface 130.

[0098] The method for using a no-code software develop-
ment platform 10 may further include the step of 1740,
operationally interfacing with at least one or more of a
customer resource management program and an enterprise
resource platform, the at least one or more customer
resource management programs and enterprise resource
platforms at least one or more of delivering lead generation,
lead tracking, calendar and appointment scheduler, event
organization, project management, push notifications,
geofencing functionality, mapping route generation, and
canvasing map creations.

[0099] The method for using a no-code software develop-
ment platform 10 may further include the step of 1745, at
least one or more of processing data received through the at
least one client interface 130 coupled to the at least one
plugin interface 150 and receiving data processed by the at
least one data source, the data source operationally coupled
to the at least one plugin interface 150.

[0100] The method for using a no-code software develop-
ment platform 10 may further include the step of 1750,
processing at least partially by at least one machine learning
algorithm at least a portion of the data received through the
at least one client interface 130.

[0101] The method for using a no-code software develop-
ment platform 10 may further include the step of 1755,
reading with the plugin interface at least one hashed plugin
artifact on a public blockchain, and receiving a security alert
sent if hash codes are not matched.

[0102] The method for using a no-code software develop-
ment platform 10 may further include the step of 1760,
reading differentiated approvals for manual plugins and for
automatic semantic Web-type plugins, the reading including

Feb. 29, 2024

one or more seals to indicate at last one or more of coverage
code, determining whether the software application is
semantic made, and determining that the blockchain code
hash matches artifact hash code, and checking the block-
chain code at least one or more of once per day, once per
hour, and as a read-only process.

[0103] The following patents are incorporated by refer-
ence in their entireties: U.S. Pat. Nos. 10,802,845,
US2016139888, US2020234003, U.S. Pat. No. 9,880,712,
US2017131978, US2015339277, US2014201705,
US2011202384, US2018213048, U.S. Pat. Nos. 8,407,576,
10,387,125, 8,930,833, W0O12148867, JP2002215393.
[0104] While the inventive concept has been described
above in terms of specific embodiments, it is to be under-
stood that the inventive concept is not limited to these
disclosed embodiments. Upon reading the teachings of this
disclosure, many modifications and other embodiments of
the inventive concept will come to mind of those skilled in
the art to which this inventive concept pertains, and which
are intended to be and are covered by both this disclosure
and the appended claims. It is indeed intended that the scope
of the inventive concept should be determined by proper
interpretation and construction of the appended claims and
their legal equivalents, as understood by those of skill in the
art relying upon the disclosure in this specification and the
attached drawings.

1. A no-code software development platform comprising:

at least one computer processor and user interface oper-

able with a memory storage medium;

at least one interconnecting functional unit including at

least one or more of at least one pre-coded form

application and at least one pre-coded card application;
the at least one pre-coded form application adapted to

perform independent, conditions-based functions;

the at least one pre-coded card application adapted to

perform interconnected workflow functions and to pro-
vide the capability to integrate with the at least one
pre-coded form application;

at least one plugin interface adapted to operationally

couple with at least one client data source via the at
least one data facing client interface; and

a declarative language software program operably cou-

pling to the at least one interconnecting functional unit,
the declarative language software program further
managing the combined function of the at least one
interconnecting functional unit.

2. The no-code software development platform of claim 1
wherein users may at least one or more of use a template,
create a template, and forgo templates, wherein created
templates may further be made available to at least one or
more of individuals, groups, and members within an autho-
rization hierarchy, the groups further determined by at least
one or more of individual identity, group identity, assign-
ment identity, and geolocation features.

3. The no-code software development platform of claim 1
further comprising at least one or more of at least one
user-facing administrative interface for software application
development and at least one data-facing client interface, the
at least one administrative interface adapted for assembling
the at least one interconnecting functional unit substantially
pre-coded to perform selected tasks, the tasks created at least
one or more of instructed by the user and instructed by data
received through the at least one data facing client interface.

US 2024/0069872 Al

4. The no-code software development platform of claim 1
wherein computer processor and storage medium operation-
ally interfaces with at least one or more of a customer
resource management programs and an enterprise resource
platforms, the at least one or more customer resource
management programs and enterprise resource platforms at
least one or more of delivering lead generation, lead track-
ing, calendar and appointment scheduler, event organization,
project management, push notifications, geofencing func-
tionality, mapping route generation, and canvasing map
creations.
5. The no-code software development platform of claim 1
wherein the declarative language software application at
least one or more of processes data received through the at
least one client interface coupled to the at least one plugin
interface and receives data processed by the at least one data
source operationally coupled to the at least one plugin
interface.
6. The no-code software development platform of claim 1
wherein at least a portion of the data received through the at
least one client interface is at least partially processed by at
least one machine learning algorithm.
7. The no-code software development platform of claim 1
wherein the declarative language is based on JavaScript
Object Notation format.
8. A method for using a no-code software development
platform comprising:
operating the no-code software development platform
stored within at least one memory storage medium
disposed on at least one computer processor;

accessing through at least one interconnecting functional
unit at least one or more of at least one pre-coded form
application and at least one pre-coded card application;

performing independent, conditions-based functions on
the at least one pre-coded form application;

performing interconnected worktlow functions by way of
the at least one pre-coded card application, the at least
one pre-coded card application further providing the
capability to integrate with the at least one pre-coded
form application;

operationally coupling with at least one plugin interface at

least one client data source via the at least one data
facing client interface; and

operably coupling with a declarative language software

program the at least one interconnecting functional
unit, the declarative language software program further
managing the combined function of the at least one
interconnecting functional unit.

9. The method for using a no-code software development
platform of claim 8, the method further including the steps
of at least one or more of using an existing template, creating
a template, and forgoing templates, wherein created tem-
plates may further be made available to at least one or more
of individuals, groups, and members within an authorization
hierarchy, the groups further determined by at least one or
more of individual identity, group identity, assignment iden-
tity, and geolocation features.

10. The method for using a no-code software development
platform of claim 8, the method further including assem-
bling with at least one administrative interface the at least
one interconnecting functional unit substantially pre-coded
to perform selected tasks, creating the tasks at least one or
more of being instructed by the user and instructed by data
received through the at least one data facing client interface,

Feb. 29, 2024

the assembly using at least one or more of at least one
user-facing administrative interface for software application
development and the at least one data-facing client interface.

11. The method for using a no-code software development
platform of claim 8, the method further including operation-
ally interfacing with at least one or more of a customer
resource management programs and an enterprise resource
platforms, the at least one or more customer resource
management programs and enterprise resource platforms
including at least one or more of delivering lead generation,
lead tracking, calendar and appointment scheduler, event
organization, project management, push notifications,
geofencing functionality, mapping route generation, and
canvasing map creations.

12. The method for using a no-code software development
platform of claim 8, the method further including at least one
or more of processing data received through the at least one
client interface coupled to the at least one plugin interface
and receiving data processed by the at least one data source,
the data source operationally coupled to the at least one
plugin interface.

13. The method for using a no-code software development
platform of claim 8, the method further including processing
at least partially by at least one machine learning algorithm
at least a portion of the data received through the at least one
client interface.

14. The method for using a no-code software development
platform of claim 8, the method further including reading
with the plugin interface at least one hashed plugin artifact
on a public blockchain and receiving a security alert sent if
hash codes are not matched.

15. The method for using a no-code software development
platform of claim 8, the method further including reading
differentiated approvals for manual plugins and for auto-
matic semantic Web-type plugins, the reading including one
or more seals to indicate at least one or more of coverage
code, determining whether the software application is
semantic made, and determining that the blockchain code
hash matches artifact hash code, and checking the block-
chain code at least one or more of once per day, once per
hour, and as a read-only process.

16. A no-code software development platform compris-
ing:

at least one computer processor and user interface oper-

able with a memory storage medium;

the at least one interconnecting functional unit comprising

at least one or more of at least one pre-coded form

application and at least one pre-coded card application;
the at least one pre-coded form application adapted to

perform independent, conditions-based functions;

the at least one pre-coded card application adapted to

perform interconnected workflow functions and to pro-
vide the capability to integrate with the at least one
pre-coded form application;

at least one plugin interface, the at least one plugin

interface adapted to operationally couple with at least
one client data source via the at least one data facing
client interface, the plugin interface further reading at
least one hashed plugin artifact on a public blockchain,
a security alert sent if hash codes are not matched; and
a declarative language software program operably cou-
pling the at least one interconnecting functional unit,
the declarative language software program further

US 2024/0069872 Al

managing the combined function of the at least one
interconnecting functional unit.

17. The no-code software development platform of claim
16 wherein users may at least one or more of use a template,
create a template, and forgo templates, wherein created
templates may further be made available to at least one or
more of individuals, groups, and members within an autho-
rization hierarchy, the groups further determined by at least
one or more of individual identity, group identity, assign-
ment identity, and geolocation features.

18. The no-code software development platform of claim
16, wherein differentiated approval are read for manual
plugins and for automatic semantic Web-type plugins, read-
ing adapted to include one or more seals to indicate at least
one or more of coverage code, whether the software appli-
cation is semantic made, and that the blockchain code hash
matches artifact hash code, the blockchain code which is
checked at least one or more of once per day, once per hour,
and as a read-only process.

19. The no-code software development platform of claim
16 wherein at least a portion of the data received through the
at least one client interface is at least partially processed by
at least one machine learning algorithm.

20. The no-code software development platform of claim
16 wherein the declarative language is based on JavaScript
Object Notation format.

#* #* #* #* #*

Feb. 29, 2024

